Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Critical Care Conference: 42nd International Symposium on Intensive Care and Emergency Medicine Brussels Belgium ; 27(Supplement 1), 2023.
Article in English | EMBASE | ID: covidwho-2317657

ABSTRACT

Introduction: Prone positions have been used extensively to improve oxygenation in patients with acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic there was widespread adoption of proning in patients with acute severe hypoxic respiratory failure. Few studies explore the use of prone positioning in mechanically ventilated COVID-19 patients. Method(s): This study was part of the REACT COVID observational study at University Hospital Southampton (UHS) [1]. Eligibility included admission to UHS with a positive COVID-19 RT-PCR between 03/2020 and 03/2022. Data was collected from all available electronic clinical data sources using semi-automated and manual data extraction. Result(s): 184 patients received invasive mechanical ventilation with documented evidence for 931 prone episodes. We performed detailed analysis for 763 prone episodes. The rest were excluded due to insufficient data. The median duration of each cycle was 16 h (IQR 15-17 h). 459 cycles were done within 7 days of intubation (early), 202 in 7-14 days (intermediate) and 102 after 14 days (late). The change in oxygenation defined as delta PaO2/ FiO2 ratio (DELTAPF) for early, intermediate, and late cycles were 2.4 +/- 5.2 kPa, 1.6 +/- 3.7 kPa and 1.4 +/- 4.0 kPa, (p = 0.03) respectively. The overall DELTAPF for all groups after a cycle was 2.1 +/- 4.7 kPa. There was an increase in PaCO2 following proning with an overall change of 0.30 +/- 1.0, however, this was not statistically significant (p = 0.30). Conclusion(s): Following proning, there was significant improvement in oxygenation. Cycles lasted for 16 h consistent with current ARDS guidelines [2]. Although the results suggest a diminishing response in those proned at later times, the DELTAPF ratio was still significant. Overall, this suggests a beneficial effect on oxygenation. However, findings cannot be translated into survival benefit. Further research including randomised controlled trials is recommended.

2.
Journal of Transport & Health ; 26, 2022.
Article in English | Web of Science | ID: covidwho-2069416

ABSTRACT

Introduction: We describe and analyse a new, open dataset of surveyed cycling infrastructure in London UK. We demonstrate its potential to contribute to research and evidence-based policy development through a spatial analysis of infrastructure provision in London, before evaluating administrative boroughs on their infrastructure mix and compliance with UK Cycle Infrastructure Design Standards. Methods: We processed and cleaned the 233,596 records in the London Cycling Infrastructure Database (CID) that contains nine infrastructure types. To support comparison between London boroughs, infrastructure provision was normalised to borough area, population size and level of commuter cycling. We generated variables capturing cyclist separation from motor vehicles and estimated cycle lane compliance for such segregation against design standards. Results: Each CID record contains the infrastructure survey date, spatial location, infrastructure -specific variables and accompanying photographs. Traffic calming assets are numerous and distributed throughout London. Cyclist signals, crossings, Advanced Stop Lanes and cycle lanes and tracks are less numerous and more commonly seen in inner rather than outer London. Normalisation by area and population did not change these spatial patterns. Six percent of on -road cycle lane length is physically segregated from vehicles. Estimated compliance with UK design standards was notably higher for inner London boroughs with 66% exceeding mean compliance compared to just 24% of outer London boroughs. Conclusions: In this first systematic description and analysis of the CID we have demonstrated its potential to quantitively and qualitatively compare infrastructure and a method to estimate compliance against design standards. We found that cycling infrastructure is not distributed equally across London and may not be of the quality that provides safe space for cycling. Such datasets are critical assets to evaluate infrastructure and guide health and transport policies.

3.
BMC Nephrol ; 22(1): 92, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1136211

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common manifestation among patients critically ill with SARS-CoV-2 infection (Coronavirus 2019) and is associated with significant morbidity and mortality. The pathophysiology of renal failure in this context is not fully understood, but likely to be multifactorial. The intensive care unit outcomes of patients following COVID-19 acute critical illness with associated AKI have not been fully explored. We conducted a cohort study to investigate the risk factors for acute kidney injury in patients admitted to and intensive care unit with COVID-19, its incidence and associated outcomes. METHODS: We reviewed the medical records of all patients admitted to our adult intensive care unit suffering from SARS-CoV-2 infection from 14th March 2020 until 12th May 2020. Acute kidney injury was defined using the Kidney Disease Improving Global Outcome (KDIGO) criteria. The outcome analysis was assessed up to date as 3rd of September 2020. RESULTS: A total of 81 patients admitted during this period. All patients had acute hypoxic respiratory failure and needed either noninvasive or invasive mechanical ventilatory support. Thirty-six patients (44%) had evidence of AKI (Stage I-33%, Stage II-22%, Renal Replacement Therapy (RRT)-44%). All patients with AKI stage III had RRT. Age, diabetes mellitus, immunosuppression, lymphopenia, high D-Dimer levels, increased APACHE II and SOFA scores, invasive mechanical ventilation and use of inotropic or vasopressor support were significantly associated with AKI. The peak AKI was at day 4 and mean duration of RRT was 12.5 days. The mortality was 25% for the AKI group compared to 6.7% in those without AKI. Among those received RRT and survived their illness, the renal function recovery is complete and back to baseline in all patients. CONCLUSION: Acute kidney injury and renal replacement therapy is common in critically ill patients presenting with COVID-19. It is associated with increased severity of illness on admission to ICU, increased mortality and prolonged ICU and hospital length of stay. Recovery of renal function was complete in all survived patients.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , APACHE , Acute Kidney Injury/epidemiology , Acute Kidney Injury/mortality , Acute Kidney Injury/therapy , COVID-19/epidemiology , Cohort Studies , Critical Illness , Female , Hospital Mortality , Humans , Incidence , Intensive Care Units , Male , Middle Aged , Organ Dysfunction Scores , Recovery of Function , Renal Replacement Therapy/statistics & numerical data , Respiration, Artificial/adverse effects , Risk Factors , Water-Electrolyte Balance
SELECTION OF CITATIONS
SEARCH DETAIL